拉曼光譜儀主要適用于科研院所、高等院校物理和化學實驗室、生物及醫學領域等光學方面,研究物質成分的判定與確認;還可以應用于刑偵及珠寶行業進行檢測及寶石的鑒定。該儀器以其結構簡單、操作簡便、測量快速高效準確,以低波數測量能力著稱;采用共焦光路設計以獲得更高分辨率,可對樣品表面進行um級的微區檢測,也可用此進行顯微影像測量。
工作原理
當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變光的傳播方向,從而發生散射,而穿過分子的透射光的頻率,仍與入射光的頻率相同,這時,稱這種散射稱為瑞利散射;還有一種散射光,它約占總散射光強度的 10^-6~10^-10,該散射光不僅傳播方向發生了改變,而且該散射光的頻率也發生了改變,從而不同于激發光(入射光)的頻率,因此稱該散射光為拉曼散射。在拉曼散射中,散射光頻率相對入射光頻率減少的,稱之為斯托克斯散射,因此相反的情況,頻率增加的散射,稱為反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射強得多,拉曼光譜儀通常大多測定的是斯托克斯散射,也統稱為拉曼散射。
散射光與入射光之間的頻率差v稱為拉曼位移,拉曼位移與入射光頻率無關,它只與散射分子本身的結構有關。拉曼散射是由于分子極化率的改變而產生的(電子云發生變化)。拉曼位移取決于分子振動能級的變化,不同化學鍵或基團有特征的分子振動,ΔE反映了能級的變化,因此與之對應的拉曼位移也是特征的。這是拉曼光譜可以作為分子結構定性分析的依據。
拉曼光譜的行業運用:
1. 石油領域。檢測石油產品質量、定性分析石油產品組成或種類。
2. 食品領域。用于食品成分的“證實”,以及摻雜物的“證偽”。
3. 農牧領域。農牧產品的分類及鑒定。
4. 化學、高分子、制藥及醫學相關領域。過程控制;質量控制、成分鑒定、藥物鑒別、疾病診斷。
5. 珠寶行業。珠寶鑒定。
6. 環境保護。環保部門水質污染監測、表面污染檢測和其他有機污染物。
7. 物理領域。光學器件和半導體元件研究。
8. 古物古玩鑒定等其他領域。
9. 地質領域。現場探礦、礦石成分的定量定性分析和包裹體的研究等。